

UNIVERSITATEA DE ȘTIINȚE AGRICOLE ȘI MEDICINĂ VETERINARĂ CLUJ-NAPOCA

Calea Mănăștur 3-5, 400372, Cluj-Napoca Tel: 0264-596.384, Fax: 0264-593.792

www.usamvcluj.ro

No	of	
NO	ΩŤ	

USAMV form 0703020112

COURSE DESCRIPTION

1. General data

1.1. Higher Education Institution	University of Agricultural Sciences and Veterinary Medicine from Cluj-
	Napoca
1.2. Facultaty	Food Science and Technology
1.3. Departament	Food Engineering
1.4.Domain of study	Food Engineering
1.5.level of study ¹⁾	Bachelor
1.6.Specialization/ Program of study	Food Engineering
1.7. Form of teaching	Full Time

2. Information on the discipline

	V							
2.1. Name of the course	Unit Operation in Food Industry – part 2							
2.2. Course coordinator				Assoc. pro	ofessor MUN	TEAN MIRCEA-	VALENTIN	
2.3. Seminar / laboratory/p	2.3. Seminar / laboratory/project coordinator				ofessor MUN	TEAN MIRCEA-	VALENTIN	
2.4. Year of study II	2.5. Semester	IV	2.6	. Type of		2.7. Course	Content ²	DD
			Eve	aluation	a	regime		
			Lvaraation		Sumate	regime	Level of	DI
							complulsory ³	

3. Total estimated time (teaching hours per semester)

3.1. Hours per week – full time programme	2	of which care: 3.2. lecture	1	3.3. seminar/ laboratory/ project	1
3.4. Total number of hours in the curriculum	28	Of which: 3.5.course	14	3.6.seminar/laboratory	14
Distribution of the time allotted					
3.4.1. Study based on book, textbook, bibliography and notes					20
3.4.2. Additional documentation in the library, specialized electronic platforms and field					10
3.4.3. Preparing seminars/ laboratories/ projects, subjects, reports, portfolios and essays					9
3.4.4.Tutorials					4
3.4.5.Examination					4
3.4.6. Other activities					
3.7. Total hours of individual study 47					

3.7. Total hours of individual study	47
3.8. Total hours on semester	75
3.9. Number of credits ⁴	3

4. Prerequisites (is applicable)

4.1. curriculum-related	Physical science, technical drawing, Special mathematics, Unit operation in food industry part 1
4.2. skills-related	The student should have knowledge of Inorganic and organic chemistry, Physical and colloidal chemistry, technical drawing

5. Conditions (if applicable)

5.1. for the lecture	It follows a direct response of the information presented in question and answ from both students and teachers. Academic discipline enforce the time start and e			
	of the course. We do not allow any other activities during the lecture, mo			
	phones are closed.			
5.2. for the seminar / laboratory /	Practical work is compulsory to wear dressing gown, consulting advisor practical			

projec	work, each student will develop an individual activity with laboratory materials made available and described in practice. Academic discipline is required for the duration of works.
6. Spec	rific competences acquired
nal Ices	C2.1. Description and use of basic concepts, theories and methods in the field of unit operations for process control and operation of agri-food chain facilities. C2.2. Explanation and interpretation of basic engineering concepts, methods and models in equipment exploitation issues in the agri-food industry.
Proffesional competences	C2.3. Application of basic principles and methods within unitary operations for solving engineering and technological problems. C2.4. Critical analysis, evaluation of the characteristics, performances and limits of some technological processes and equipments in the field of the agri-food industry.
	CT1 Apply the strategies of perseverance, rigor, efficiency and responsibility at work, punctuality and taking

Transversal competences

CT1 Apply the strategies of perseverance, rigor, efficiency and responsibility at work, punctuality and taking responsibility for the results of personal activity, creativity, common sense, analytical and critical thinking, problem solving, etc., based on the principles of norms and values of the code of professional ethics in the food field.

CT2 Application of interrelation techniques within a team; amplifying and refining the empathic capacities of interpersonal communication and of assuming specific attributions in carrying out the group activity in order to treat / resolve individual / group conflicts, as well as the optimal time management;

CT3 Efficient use of various learning pathways and techniques - training for the acquisition of information from bibliographic and electronic databases both in Romanian and in an international language, as well as assessing the need and usefulness of extrinsic and intrinsic motivations of continuing education;

Coordination of technological activities and processes based on technical specifications;

Analysis of the technical solutions necessary to improve the quality of food products and to reduce specific consumption.

7. Subject Objectives (as a result of the specific competences gained)

7.1. Subject general objective	Able to know unit operation of food industry branch of manufacture.			
	Know the devices and equipments that occur transforming raw materials into			
	finished product;			
	Able to know the specific installation used in food industry branch.			
7.2. Specific objective	Able to know and use the latest equipment, methods and measurement systems			
	that are used in heat transfer processes that occur in the processing of			
	agricultural products in specific installations;			
	Have known about the operation of the equipment and facilities in food			
	industry branch, to develop the skills to use the theoretical concepts and			
	principles in addressing practical problems found in operations and the devices			
	used in food industry.			
	Analyze and evaluate the characteristics, performance and limitations of			
	processes and technological equipment of the food industry.			
	Know the important factors with which it develops, implements and monitors			
	the technical projects and some new technological;			
	To develop a project specific process or machine food industry using concepts,			
	theories and methods based on food industry field;			
	To solve concrete problems of food science based on an algorithm.			

8. Content

o. content		
8.1. LECTURE	Methods of teaching	Observations
Number of hours – 14		
Distillation. Basic laws of distillation. Mixtures used.	Lectures	1 lecture = 2 hours
Distillation methods and distillation installations.		
Rectification. Rectification types. Rectification	Lectures	1 lecture = 2 hours
apparatus.		
Extraction. Extraction Apparatus for solid – liquid	Lectures	1 lecture = 2 hours
extraction. Calculation elements of extraction apparatus.		
Pasteurisation. Pasteuriser. Calculations elements.	Lectures	1 lecture = 2 hours
High pasteurization. High pasteurization ALPURA	Lectures	1 lecture = 2 hours
plantSterilization. Sterilisation apparatus. Calculation		
elements.		
Drying. Drying method. Drying apparatus. Calculation	Lectures	2 lectures = 4 hours
elements.		

O. A. DD. I. CONT.C. I. T. I. C. D. I.		
8.2. PRACTICAL WORK		
Number of hours – 14		
Introduction. Laboratory safety rules. Technical	Analysis MSDS and PCC.	1 lecture = 2 hours
calculation errors, charts and measures of size	Using the Technical	
intervening processes studied in laboratory.	calculation applications in	
	the study of measurements	
	of the processes occurring in	
	lab.	
Analysis of the sieving ranking process of granular	Making the measurements	1 lecture = 2 hours
materials in the sifting machine.	with experimental laboratory	
	sifting machine.	
	36.1	
Analysis of the kinetics of the sifting operation and	Making the measurements	1 lecture = 2 hours
sifting efficiency of granular materials in sifting	with experimental laboratory	
machine.	apparatus.	
Study of heat transfer in stationary state in double-	Making the measurements	1 lecture = 2 hours
tube uniflow heat exchanger. Study of heat transfer	with experimental laboratory	1 lecture – 2 hours
in stationary state in double-tube counter heat	apparatus.	
exchanger.	apparatus.	
Cheminger		
Study of convective heat transfer in finned tube heat	Making the measurements	1 lecture = 2 hours
exchanger.	with experimental laboratory	
	apparatus.	
Analysis of the drying operation with heat	Making the measurements	1 lecture = 2 hours
conduction in the dryer cylinder.	with experimental laboratory	
	sifting machine.	
Recovery of the absences. Verifying knowledge	Colloquium	1 lecture = 2 hours
Compulsory bibliography:		
1 Muntean M-V – Operatii Unitare în Industria Alimentară	manual didactic Editura Risoprint 2	2015

- 1. Muntean, M-V Operații Unitare în Industria Alimentară, manual didactic, Editura Risoprint, 2015
- 2. Cătunescu Giorgiana, Muntean, M-V Îndrumător de lucrări practice și aplicații în industria alimentară, Ed. AcademicPres, 2016
- 3. Banu, C-tin si colab. Manualul inginerului de industrie alimentara, Ed Tehnica, Bucureşti, 1999
- 4. Ioancea, L. şi colab Maşini şi instalaţii în industria alimentară, Ed. Ceres, Bucureşti, 1986

Facultative bibliography:

- 1. Amarfi, Rodica Economia de energie în industria alimentară, Ed. Tehnica, București, 1991
- Amarfi, Rodica Procesarea minimă atermică şi termică în industria alimentară, Ed. Alma, Galaţi, 1996
- 3. Banu, C-tin si colab. Tehnologia cărnii și a subproduselor, EDP, București, 1980
- Banu, C-tin şi colab Progrese tehnice, tehnologice şi ştiinţifice în industria alimentară, vol. I, Ed.
 - Tehnica, Bucureşti, 1992
- 5. Băcăuanu, Ana Operații și utilaje în industria chimică și alimentară, curs Lito, Universitatea Tehnica « Gh. Asachi », Iași, 1996
- 6. Cojocaru, C. si colab. Manualul inginerului din industria alimentara, Ed. Tehnica, Bucuresti, 1998
- 7. Florea, O., Jinescu, G., Procedee intensive în operațiile unitare de transfer, Editura Tehnică, București, 1975;
- 8. GEANKOPLIS, C.J., Transport processes and unit operations, Prentice-Hall International, Inc., New Jersey, 1993;
- 9. Iliescu, I. și colab. Procese și utilaje în industria alimentara, EDP, București, 1975
- Ioancea, L. si Kathrein, I. Condiţionarea şi valorificarea superioară a materiilor prime vegetale în scopuri alimentare – Tehnologii şi instalaţii, Ed. Ceres, Bucureşti, 1986
- 11. Jascanu, V. Aparate și procese în industria alimentară, Curs litografiat, vol. I si II, Universitatea din Galați, 1980
- 12. Muntean Mircea, Gherman Vasile Fenomene de transfer Note de curs si lucrari practice, Ed. AcademicPress 2010
- 13. Răsnescu, I. Operații și utilaje în industria alimentară, vol I si II, Ed. Tehnica, București, 1972
- 14. RASENESCU, A., Fenomene de transfer, Editura Universității din Galați, 1979;
- 15. ŞTEFĂNESCÜ, D., MARINESCU, M., *Transferul de căldură în tehnică culegere de probleme pentru ingineri*, Editura Tehnică, Bucureşti, 1983;
- 16. ŞTEFĂNESCU, D., ş.a., Transfer de căldură și masă teorie și aplicații, Editura Didactică și Pedagogică, București, 1983

9. Corroborating the course content with the expectations of the epistemic community representatives, of the professional associations and of the relevant stakeholders in the corresponding field

In order to identify ways of modernization and continuous improvement of teaching and course content with the current issues and practical problems teachers attend the annual meeting of the Romanian Association of Food Industry Engineers where issues are discussed current and future technologies in Romania and Europe.

10. Assessment

10. Habeabillett			
Type of activity	10.1. Evaluation criteria	10.2. Evaluation methods	10.3. Percent of the final grade
10.4. Lecture	Knowing the types of unit operations in the food industry studied in		

	semester 2; Knowing compenent parts, installations function, apparatus and tools studied. Knowledge of general concepts concerning unit operations analysis; Knowledge of the factors influencing the food industry specific unit operations;	oral exam	80%
10.5. Seminar/Laboratory	Knowledge of students by the unit operations in the food industry. Knowledge of component parts, operation and use of various devices and equipment in specific food operations studied. Knowing how to determine, processing and interpretation of measurements of the processes simulated in the laboratory with the food industry.	Laboratory Colloquium and attendance course	10% +10 %

10.6. Minimum performance standards

Mastery of scientific information transmitted through lectures and practical work at an acceptable level. Obtaining the pass mark in colloquium test is the condition of graduation.

- Level of study- to be chosen one of the following Bachelor/Post graduate/Doctoral.
- ² Course regime (content) for bachelor level it will be chosen one of the following **DF** (fundamental subject), **DD** (subject in the domain), **DS** (specific subject), **DC** (complementary subject).
- ³ Course regime (compulsory level) to be chosen one of the following **DI** (compulsory subject), **DO** (optional subject), **DFac** (facultative subject)
- One ECTS is equivalent with 25-30 de hours of study (didactical and individual study)
- Disciplines: AK- Advanced knowledge, CT- Complementary Training, S- Synthesis

Filled in on 06.09.2021

Course coordinator
Assoc. Professor Mircea-Valentin Muntean

Laboratory work/seminar coordinator Assoc. Professor Mircea-Valentin

Muntean

A service valentin iviano

Subject coordinator Assoc. Professor Mircea-Valentin Muntean

Approved by the Department on 22.09.2021

Approved by the Faculty Council on 28.09.2021 Head of the Department

Dean

Professor PhD. Elena Mudura