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I. Introduction 

In a globalized and interconnected world, biodiversity is seen as an indicator of 
biosphere health. Biodiversity is not simple about diversity of species, but also includes 
genetic and ecosystem diversity, along with cultural diversity.  

The collection and analysis of biodiversity data as part of a management effort 
depends on social and political organization and depends on technology. From high-
quality observations by researchers to rapid scans by sensors, technology enables the 
accumulation of substantial amounts of data. This data can then be used to better 
understand the impact of human activities on biodiversity and inform conservation 
policies. In natural and semi-natural surface ecosystems, the impact of human activities 
such as fertilization and intensive exploitation on biodiversity must be considered.  

Complex management could be a solution, but to integrate biodiversity 
conservation into management we need quantitative and qualitative information about 
these ecosystems. 

II. Agriculture drones 

Remote Sensing, Earth Observation, and Automation. 

Remote Sensing (RS) measures radiation emitted or reflected by objects to obtain 
information about the Earth, and the informational transition from geography to biology 
and ecology is revolutionary. There are two main approaches to using RS in this regard:  

The direct approach involves recording data at various levels, from individual 

organisms to ecological communities. 

The indirect approach involves modelling data together with ecological 

parameters and indicators, transforming the results into conventional values for the 

study of biodiversity. 

Different technologies are used in remote sensing to automate measurements and 
observations: Support Vectors Machines, Object Orientated algorithms, mixed spectral 
analysis algorithms and more. These technologies enable data analysis and classification 
at distinct levels, from individual pixels to more uniform pixel segments.  

Machine learning applications are increasingly part of the Ăgriculture 4.0 
paradigm. Digitization and automation are based on the development of new methods 
and algorithms, such as Convolutional Neural Networks (CNN) using increasingly 
advanced hardware. CNN models have become the dominant method for recognizing 
objects in an image or video, equaling and even surpassing human performance in many 
areas, including RS. 

Unmanned Aerial Vehicles 

Unmanned/Unoccupied Ăerial Vehicles (UĂV) or "drones" (hereinafter used) 
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have a military origin and continue to be important in the field of security. These vehicles 
come in many shapes and sizes, often designed for specialized missions.  

Depending on the type of flight, drones can be fixed-wing, multi-rotor, or hybrids 
with wings and rotors. Depending on the landing and take-off procedure, drones may 
require a runway to take off/land, may land or take off from the same spot, or may be 
launched with a short launch pad and land using a parachute. Depending on the 
construction, drones can be classified by weight and size or by power supply. Depending 
on the load, civilian drones can be used for freight, sensor transport for ground 
measurements, or fly unloaded, such as for entertainment and sport competitions. 

 Military drones are being used in innovative ways, while having complex 
production chains which are under stress. In this context, drones are transformed into 
"smart bombs" with guided self-destruction, thanks to low-cost drone parts. Defending 
against drones is another aspect of the technological complexity produced by these 
systems. Examples of drone defense include destruction by kinetic projectile, 
destruction by concentrated electromagnetic rays, immobilization by net thrower, 
destruction by anti-drone drones, jamming communication or sensors, and infiltration 
of the communication system and taking control of the drone. The UN is working to form 
conventions to regulate and control these weapons, with the goal of internationally 
banning fully autonomous weapons by 2026. 

Drones in Agriculture 4.0 

Drones, equipped with diverse types of sensors, can collect high-resolution aerial 
images that help monitor soil, crop health, detect stressors and optimize farming 
practices through accurate data collection and analysis. CNN models are used to analyze 
images collected by drones and make crop predictions. For example, they can 
successfully detect crop height, estimate maize crop yields, measure the amount of 
flowers in strawberry crops, and be used to estimate yield in rapeseed and cotton crops. 

Drones can be used to spray pesticides and fertilizers on farmland. They can 
reduce pest control costs and increase management efficiency compared to traditional 
methods. The images collected by drones can help identify weeds with high accuracy, 
allowing farmers to apply site-specific treatments. Drones can even be used to monitor 
rodent attacks, and can help control rodents through precision farming methods, such 
as adding rodenticides to specific areas.  

The importance of drones in modern agriculture is becoming ever greater and 
presents several practical applications for good agricultural practices. 

Conservation Drones 

Drones are commonly used for remote sensing, providing an affordable 
alternative to ground-based measurement satellites. They can fill an important gap 
between terrestrial measurements and biodiversity assessment. Case studies in the field 
highlight a wide range of applications, from mapping forest areas and monitoring 
invasive species, to exploring relationships between vegetation and dune morphology or 
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detecting diseased trees. In some cases, drones have been used to produce high-quality 
data on the vertical structure of forests, analyze sea cliff vegetation, or detect and 
measure whales in the ocean. In other cases, they have been used to monitor forest 
restoration projects or detect invasive shrubs. There are also drones used for 
reforestation seeding. 

Drone technology is proving to be a valuable tool in biodiversity conservation 
efforts, allowing researchers to obtain detailed and up-to-date information about 
diverse ecosystems and species. There are limitations such as lower coverage compared 
to satellites or difficulties with automatic image classification. Despite these challenges, 
the potential of drones in this area is significant and continues to grow with the 
development of technology. 

Remote sensing of grassland vegetation 

Studies demonstrate the potential of drone technology and machine learning in 
monitoring and preserving biodiversity. Drones, through their ability to perform high-
resolution remote sensing, allow researchers to obtain detailed data on various 
ecosystems and species. In addition, the use of machine learning algorithms such as 
Support Vector Machines and CNNs facilitates the processing and analysis of this data, 
allowing species of interest to be identified and counted. There are challenges such as 
the need for high resolution to detect small species and difficulties with automatic image 
classification. Despite these challenges, the results of studies suggest that this approach 
has significant potential in the field of biodiversity conservation. 

Uses of Arnica montana 

Arnica montana is a medicinal plant with various therapeutic properties: 
antibacterial, antitumor, antioxidant, anti-inflammatory, antifungal and 
immunomodulatory.  

In terms of agronomic value, A. montana can be cultivated, but it can also be 
harvested sustainably, contributing to the conservation of biodiversity and High Nature 
Value (HNV) lands. 

The oligotrophic grasslands where A. montana grows are complex plant and 
animal communities with high biodiversity. The management of these grasslands 
involves balancing biodiversity conservation and agricultural production. Traditional 
mowing or mowing twice a year is recommended for the preservation of A. montana. 
Threats to the conservation of A. montana in semi-natural grasslands include climate 
change, agricultural intensification, abandonment, and habitat loss. 

A. montana is a valuable species both medicinally and agronomically. The 
sustainable use of this species is an exemplary case of international efforts to conserve 
biodiversity.  

III. Objectives & methodology 

The research objectives lead to a solution for monitoring oligotrophic grasslands 
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in the Ăpuseni Mountains through the use of drones and by automatically counting the 

Arnica montana inflorescences in aerial images. The main objectives are: 

I. Identify a methodology for studying biodiversity with the help of drones; 

II. Develop software for identifying A. montana inflorescences in digital aerial 

images;  

III. Explore the possibilities of using drones for mapping oligotrophic 

grasslands with A. montana, in the Ăpuseni Mountains. 

 The specific objectives are to conduct drone flights in an oligotrophic grassland 

in Germany to obtain drone imagery to training a CNN model, to form a robust CNN 

model for counting inflorescences, to conduct drone flights in several oligotrophic 

grasslands in Romania to obtain imagery for evaluating the performance of our model, 

and to build supporting software applications for using the CNN model in situ. 

Methods & Technologies 

Two drones were used: the “DJI S1000” model in Germany and the “DJI M300” 
model in Romania to obtain aerial imagery. Both drones are similar in performance. The 
drones carried cameras that were similar in performance, resulting in hundreds of high-
resolution images from each flight. Four flights took place in the Black Forest, Todtnau, 
Germany (2018), producing images for the training effort of a new CNN model. Nine 
flights took place in the Ăpuseni Mountains, Ghet ari, Romania (2021), producing images 
for the evaluation of the software system. The images were sampled randomly and 
blindly. For training the CNN model for counting inflorescences, images with A. montana 
were labeled using several types of labels that were defined to try to include possible 
cases after grouping the inflorescences and after clarity, all at low resolution. For the 
prototype, only clear individual inflorescences (ĂM1), unclear individual inflorescences 
(BĂM1), and unclear binary inflorescences (BĂM2) were included. We formed a 
dedicated CNN model for detecting A. montana inflorescences, following conventional 
documentation and using the following: Python programming language, specially 
written applications, the TensorFlow2 platform, the base CNN ResNet101 model, and 
manually defined labels and images (supervised learning). 

The produced model, named “ĂrnicaĂI”, was evaluated on aerial images created 
in Ghet ari. The results were collected, investigated, and statistically analyzed. Key flight 
factors – the GSD value and the flight time (expressed as the length of the shadow 
produced by sunlight) – were integrated into the statistical analysis to determine 
technological performance limits (best practices) regarding flight planning over 
grasslands. The greatest possible aerial coverage requires finding a balance between 
flight altitude and the quality of the visible plant details in the images produced with the 
drones, which is why we focused on maximizing low-resolution inflorescence detection.  
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IV. Results & Discussion 

In this study, a software suite was assembled to manage, process, and evaluate 
aerial images. The software suite included support programs for organizing image 
collections and for composing applications. For the division of images for training, an 
application was created that efficiently fragments large images into small images, 
suitable for use with the (CNN) ResNet101 model. The model training was accomplished 
through the TensorFlow2 platform with a minimally customized configuration. For in 
situ testing, two applications were created: one that uses the model (ĂrnicaĂI) and one 
that helps to report the results.  

The labeling effort 
produced a total of 23,680 
labels for machine learning 
(training the model). The 
majority were for BĂM1, 
followed by ĂM1 and BĂM2. 
Most of the labels for 
individual inflorescences had a 
low resolution, under 33 x 33 
px. The model was successfully 
trained (Figure 1), reaching a 
learning rate of 0 and 
presenting internal self-
evaluation indicators with 
satisfactory progress. 

In the results produced by ĂrnicaĂI, several cases of overlap of the boxes marking 
the detected inflorescences were 
observed. This type of result is 
due to the default configuration of 
the model, especially the 
adjustment of the filters in the 
aspect called “non-maximal 
suppression.” By adjusting the 
configuration, tighter and more 
accurate matches of the boxes on 
the A. montana inflorescences can 
be made. Overall, the ĂrnicaĂI 
model finds ĂM1 inflorescences 
in several different situations, 
including where the resolution is 
low and where we have 
occlusions from other plants 
(Figure 2). Detections seem 

focused on the ligulate (ray) flowers, which is where the most detail exists at low 
resolution. This specialization may also be the result of overfitting as the model used 

Figure 2 True positive detections. 

Figure 1 Model learning rate in 50000 steps (epochs). 
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blurry images (BĂM) as negative examples to train against, leading to choosing the 
clearest inflorescences as ĂM1. The ĂrnicaĂI model is only slightly adjusted compared 
to the base model’s defaults, its configuration representing more of a constant in 
experiments, not a factor. Our model has a reduced score threshold to report as many A. 
montana detections as possible, even if many are wrong (decreases accuracy), so that we 
can observe the limits.  

Table 1  

Model evaluation for AM1 detection. MPF – mean precision per flight 

Aerial Survey Altitude (m) Shadow size (CM) GSD (CM) Images Detections MPF (%) 

JUN1 20 16 0.21 65 1570 51.23 
JUN2 40 15 0.42 63 1648 49.05 
JUN3 18 14 0.19 59 1450 44.92 
JUN4 18 13 0.19 104 1470 51.62 
JUN5 30 13 0.31 40 265 45.75 
JUN6 60 30 0.65 68 911 16.03 
JUL1 60 51 0.73 26 65 10.00 
JUL2 40 56 0.49 37 111 10.54 
JUL3 30 59 0.37 40 237 12.75 

From each evaluated image, a precision value results (true positive cases of total 
detections, as a percentage), and for each flight, the average of these values was 
calculated: Flight Precision Ăverage (Table 1, MPF). The model can be adjusted to 
increase precision, but this must be a decision within the management plan. The model 
presents a precision performance that varies between 10% and 52%, with an average 
success rate of 32%. Therefore, the use of the model in the field involves the use of 
correction coefficients to obtain a realistic estimate of A. montana inflorescences. 

GSD (Ground Sampling Distance), as a scale of the detail in the image, is a key 
factor in the success of RS and of manual species identification from aerial images. For 
the automatic identification of inflorescences, the GSD value is as important as for 
manual identification. Ănother crucial factor is the time at which the flight was 
performed, the date, and the location, as these determine the shadow size produced by 
sunlight, and shadows add distortions to the identification process. 

Table 2 

Descripive statistics for the evaluation of ArnicaAI results 

Variable n Mean Standard Error Min. Max. 
First analysis: between the 9 aerial surveys 

Precision (%) 9 32.43 19.27 10.00 51.61 

GSD (cm) 9 0.40 0.20 0.19 0.73 

Shadow size (cm) 9 29.67 20.04 13.00 59.00 

Second analysis: between all the evaluated images 

Precision (%) 503 36.92 31.10 10.00 100.00 

GSD (cm) 503 0.64 0.33 0.45 1.34 

Shadow size (cm) 503 23.90 16.83 13.00 59.00 

To determine the correction coefficients, a statistical analysis was performed on 
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the results in two stages: first, the results were analyzed according to the flight, then the 
combined results were analyzed in a single set with all the evaluated images from all 
these flights, a set of 503 images (Table 2).  

For the results between flights, a statistical analysis would have an exploratory 
role, having only 9 flights. For the combined set of results, several statistical tests were 
applied, starting with the test for the Pearson correlation coefficient (Table 3). 

Table 3  

Pearson's correlations. 
r – correlation coefficient; p – probability; S.E. – standard error 

Pair of variables r p Effect S.E. effect 
Precision (%) – GSD (cm) −0.449 *** <0.001 −0.483 0.045 
Precision (%) – Shadow size (cm) −0.258 *** <0.001 −0.263 0.045 
Shadow size (cm) – GSD (cm) 0.237 *** <0.001 0.241 0.045 
*** p < 0.001 

The correlations between the three variables indicate statistically significant 

relationships, with a negative effect of GSD on precision, and a slightly negative effect of 

shadow size on precision. To formulate a statistical model between the three variables, 

a Null hypothesis (H0) includes the two independent variables as follows: 

𝒀 =  𝜷₀ +  𝜷₁𝑿₁ +  𝜷₂𝑿₂ 

The statistical model is as follows: Y - the dependent variable (Precision); β0 - the 
intercept value (Precision); β1 - GSD coefficient; X1 - independent variable (GSD); β2 - 
Shadow size coefficient; X2 - independent variable (Shadow size). 

The coefficient of determination (R2) for this statistical model is 0.226, with a 
statistically significant value (p < 0.001). The result shows that 22.6% of the Precision 
variance is explained by the statistical model.  

The ĂNOVĂ test confirms the Null hypothesis with GSD and Shadow size as a 
statistically significant model (p < 0.001) and 2 degrees of freedom.  

The last statistical test was a linear regression that produced the following 
coefficients: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏% = 𝟔𝟗, 𝟏𝟕𝟑 − 𝟑𝟗, 𝟐𝟖𝟑 × 𝑮𝑺𝑫𝒄𝒎 − 𝟎, 𝟐𝟗𝟔 × 𝑺𝒉𝒂𝒅𝒐𝒘_𝒔𝒊𝒛𝒆𝒄𝒎 

The linear regression model has a Precision intercept value of 69.173 with a 
standard error of 2.959, and it is statistically significant (p < 0.001). This value of 
approximately 70% represents the maximum precision achieved with ArnicaAI under 
optimal flight conditions according to the evaluation experiences in Ghet ari. The GSD 
(ground sampling distance) value has a coefficient of -39.283 with a standard error of 
3.874 and a standardized coefficient of -0.411, forming a negative relationship with 
Precision (dependent variable). The t-test value is -10.140 and it is statistically 
significant (p < 0.001). 

The Shadow size coefficient is -0.296 with a standard error of 0.075 and a 
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standardized coefficient of -0.160, indicating a small negative effect on Precision. The t-
test value is -3.956 and it is statistically significant (p < 0.001). The correlation with the 
length of the shadows confirms the importance of variation in the images from the 
training of the ĂrnicaĂI CNN model, so that, in addition to the transfer of learning from 
images with the population of A. montana from the Black Forest to the population from 
Ghet ari, the timing limitation was also transferred. 

The coefficients of the statistical model allow for the estimation of detections if 

the flight parameters – GSD and shadow size – are known, and these calculations can be 

improved with empirical data from the use of the system and validation through manual 

counting, and even including other variables such as the heterogeneity of the ground 

surface included in the aerial images (the larger this is, the more unclear portions there 

are in the images). 

The result of the correlation with GSD confirms the importance of images with a 

small ground sampling distance and presents a limit of the GSD value: a maximum of 

0.45 cm to obtain good precision with our CNN model, ĂrnicaĂI. Given that the flights 

for training imagery took place in a shorter interval, between morning and lunch, with 

shadows of length in the range of 17-25 cm, we can observe a sharp loss of performance 

in the evaluation for images with shadows larger than 25 cm. This indicates the most 

suitable hours for aerial surveys with ĂrnicaĂI. 

The results of the study are positive, but limited, and are in line with recent similar 
efforts that use convolutional neural networks (CNN) to detect herbaceous species. The 
low resolution of the plants limits performance and overlapping vegetation increases 
errors. For A. montana, the training was focused on the flowering phenophase, which 
eased the overall effort. The study confirms the methodological findings of other 
research that used a similar technological suite to detect inflorescences from several 
species. These studies have found that larger inflorescences are easier to detect and that 
there are difficulties that arise due to overlapping group inflorescences. This challenge 
is what we aim to solve in the future with the group label sets (ĂM2-5, ĂMN), to avoid 
confusion and to count groups of “bouquets” that can later be aggregated into a more 
representative total for the real situation in the grassland. 

V. Conclusions & Recommendations 

Ăs part of the doctoral thesis, a specialized software suite was developed for 
processing and analyzing aerial images from drones. The solution is adapted to 
oligotrophic grasslands with Arnica montana L. from the Ăpuseni Mountains and the 
Black Forest. By integrating advanced algorithms, the production, labeling, and 
evaluation of images have been simplified or automated, thus facilitating grassland 
mapping. Machine learning algorithms were implemented, with training on a 
comprehensive dataset that included small and medium resolution details. The use of 
the software suite significantly reduced the time needed for processing and analyzing 
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images, providing functional, qualitative, and promising results (Main objectives: I and 
II.) 

The flight altitude and the GSD value have a significant impact on the quality of 
the images obtained in biodiversity studies based on automatic remote sensing (RS). 
Flights at low altitudes offer better resolution but require careful planning to obtain 
clear images. Too low flight altitudes can lead to images with a high level of detail but 
can be affected by shadows and other artifacts. In contrast, too high flight altitudes can 
lead to images with a poorer resolution, which can make it difficult to identify plant 
species and other ecological characteristics (Main objectives: I and III.) 

The timing of the flight also has a significant impact on the quality of the images. 
Flights conducted during the day, when the Sun is at its zenith, produce the best results. 
On the other hand, flights conducted early in the morning or late in the afternoon, when 
the sun is at a lower angle, can produce images with long shadows and details unfamiliar 
to the trained model. Careful planning of flights and a deep understanding of the factors 
that influence the quality of images are essential for obtaining high-quality results (Main 
objectives: I and III.) 

The clarity of images is essential for the correct identification of plant species and 
characteristics of interest in biodiversity studies based on automatic RS. More clarity 
translates to more detail, allowing for a more detailed analysis of habitat structure and 
other aspects of the ecosystem. In contrast, blurry images or those affected by 
unfavorable weather conditions can lead to errors in species identification and 
biodiversity analysis, as long shadows or dim light can make it difficult to distinguish 
between different plant species or can hide crucial details about habitat structure. 

Obtaining clear and high-quality images is essential for biodiversity conservation 
with this methodology. By optimizing flight conditions and image calibration, high-
quality images can be obtained that allow for a detailed and accurate analysis of species 
of interest. This demonstrates the importance of careful planning and implementation 
for biodiversity studies based on RS (Main objectives: I and III.) 

The main recommendation is to continue and expand the use of drones for 

mapping ecosystems with A. montana, involving the planning and systematic execution 

of flights, and covering relevant areas. The use of other types of drones or sensors can 

be explored to obtain higher-resolution images and finer details.  

The ĂrnicaĂI model should be updated with labeled images that come from flights 

from sunrise to sunset in the flowering season of A. montana.  

It is important to continue improving ĂrnicaĂI, and to validate and calibrate the 

data collected through drone flights, using testing plots, comparing the data with ground 

measurements, and adjusting the correction coefficients. 
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